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Speaker:	Dr.	Neil	Bockoven	
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CCGS (Non-) President’s Letter 

 
First, I want to commend the CBGS for hosting a great lunch-and-learn seminar at the AEP Building conference 
room in October.  The presentation by Schlumberger on VSPs was super.  These kinds of informal 
presentations will be a fun part of our annual schedule and we should all look forward to the next lunch-and-
learn in the spring. 
 
Our season’s first CCGS-hosted luncheon will be on November 20, upstairs at Water Street Seafood Company 
(above where our meetings were last year).  Our lead-off speaker will be Dr. Neil Bockoven talking on the 
interactions of Neanderthals and Homo sapiens.  Before he retired, Neil supervised ExxonMobil’s activities in 
South Texas, particularly the King Ranch.  Many in our Society got to know Neil in that role, and it will be 
great to welcome him to Corpus Christi.  Please plan to attend the fascinating luncheon this month.  BTW - I 
hear Austin’s ordered up a great meal for our luncheons! 
 
Just a reminder, our luncheon schedule is changed.  The CCGS will hold regular luncheon meetings at Water 
Street Seafood Co. in the following months.  The luncheon cost is $30, students are sponsored. 

• November 
• January 
• March (depending upon how Spring Break occurs) 
• April 
• May 

 
The CBGS will host lunch-and-learns at the AEP (basement) conference room in these months with pizza and 
drinks for $15: 

• October 
• February 
• Others as opportunities arise. 

 
About our Society.  This year, the Corpus Christi Geological Society has a core membership of about 200 
professionals and 50 students.  We have money in our operating funds and significant savings dedicated to 
geoscience education and enrichment.   The Board has taken several small steps to make our activities match 
our membership numbers and general participation interests of our members.  So, in most regards, the CCGS 
is a healthy, somewhat wealthy, remarkably generous, and active professional Society.  We have a 
distinguished senior membership and delightful young professionals and students involved in many facets.  I 
am happy and proud to be a member of the CCGS – you should be, too.  I hope for continued support with 
your participation, membership, generosity, and leadership. 
 
As always, if you have any ideas for luncheon speakers or meeting topics, please let me know. 
 
Randy Bissell 
CCGS Board and Membership Czar 
randyb@headingtonenergy.com 
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CBGS President’s Letter 
 
CBGS Board 2019-2020 
Dr. Subbarao Yelisetti- President 
Samara Omar- Vice President 
Erik Scott- Secretary/ Treasurer 
Matt Hammer - Scholarship Chair 
Mark Wiley - Golf Chair 
Education – Robert Schneider 
 
CBGS Scholarships 
The Coastal Bend Geophysical Society (CBGS) has donated $10,000 to the Department of Physics 
and Geosciences, Texas A&M University-Kingsville in support of the multidisciplinary 
Petrophysics Graduate Program that has been requested. These funds will be used as scholarships 
in attracting quality graduate students. 
 
The board awarded three scholarships of $2,000 each to undergraduate geophysics majors from 
Texas A&M University-College Station, University of Houston and Texas A&M University-
Kingsville in 2017-2018. We will be awarding the scholarships again this year.  
 
Scholarship Requirements  
Criteria for awarding the Scholarship from Coastal Bend Geophysical Society of Corpus Christi, 
Texas:  

1. Scholarships are open to undergraduate or graduate students.  
2. Must have declared major in Geophysics, or Geology with a concentration in Geophysics 

or Petrophysics.  
3. Preference is given to students attending Coastal Bend schools (TAMU-K, TAMU-CC 

and Del Mar College), then to Coastal Bend natives attending other universities.  
4. Must have a GPA of at least 3.0 and be in good standing with the school.  
5. Must make effort to attend a Coastal Bend Geophysical Society Meeting in Corpus Christi 

Texas after being awarded a scholarship to be recognized by the society. 
News 

• According to Baker Hughes, U.S. oil drillers cut rigs to lowest since May 2017. The 
current rig count is 719. There were 866 active rigs in the same week a year ago. 

• At the time of writing this report, U.S. crude futures were trading around $59 a barrel and 
expected to remain so for the balance of 2019, and $55 in calendar 2020 as reported by 
Scott DiSavino on reuters.com.  

• The U.S. active oil and gas rig count so far this year has averaged 988. 
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• According to the analysts at Simmons & Co forecast, the average combined oil and gas 
rig count will slide from a four-year high of 1,032 in 2018 to 970 in 2019 and 955 in 
2020 before rising to 997 in 2021 as reported by Scott DiSavino on reuters.com.  

• According to the U.S. Energy Information Administration (EIA) projections, U.S. crude 
output would rise by 74,000 barrels per day (bpd) in October to a record high of 8.84 
million bpd.  
 

CBGS Business 
CBGS currently has 42 active members, 4 honorary members, and 40 student members. Raised 
$1,200 towards student scholarships through membership revenue.  

CBGS workshops/talks 

CBGS organized the October luncheon talk entitled “A refresher in the understanding and use of 
VSPs, checkshots and synthetic seismograms” by Richard Parker, Geophysicist w/Schlumberger 
and Edgar Velez, Geomechanics domain champion for the western hemisphere. Raised $365 
towards student scholarships.  
CBGS is looking forward to offer workshops/talks in the future. Topic/speaker suggestions are 
welcome. Email your suggestions to Samara_Omar@eogresources.com or 
Subbarao.Yelisetti@tamuk.edu 

Golf Tournament  
CBGS organized its annual Golf Tournament to fund its scholarship program in the first week 
of October, 2019 at Northshore Country Club. Raised ~$1,600 for the scholarship fund.  
If you are interested in our next Golf Tournament, please contact Mark Wiley at 
Mark_Wiley@eogresources.com  

New Degree Tracks at TAMUK 
• Texas A&M University-Kingsville (TAMUK) started its first cohort of MS Petrophysics 

program in Fall 2018. If you are interested in joining this program in Fall 2019, please 
contact the graduate coordinator for MS in Petrophysics, Dr. Subbarao Yelisetti at 
Subbarao.Yelisetti@tamuk.edu.  

• BS degree in Geophysics, Minor in Geophysics and Certification in Geophysics 
offered at Texas A&M University-Kingsville since Fall 2017. Interested students can 
contact Dr. Subbarao Yelisetti (Subbarao.Yelisetti@tamuk.edu) for additional 
information.  

Seismology class 
PHYS 5385 Seismology class will be offered in Spring 2020 at Texas A&M University-
Kingsville. This is available for the professional community as well as our students. You can 
sign up as a “transient” student in order to take classes without actually enrolling in the school. If 
anyone in the professional community wishes to sign up for this, please contact, Dr. Subbarao 
Yelisetti Subbarao.Yelisetti@tamuk.edu.   
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SEG Distinguished Lecture 
CBGS and TAMUK SEG student chapter organized 2018 SEG Distinguished Lecture in 
January, 2018. We wish to organize many more lectures in the future.  
 
 
Ocean Discovery Lecture 
The Department of Physics and Geosciences at Texas A&M University—Kingsville is 
organizing an Ocean Discovery lecture on November 7th, 2019, 4:00-5:30 pm, Peacock 
Auditorium. The speaker is Dr. Matthew Hornbach from Southern Methodist University.  The 
title of the talk is “Forecasting slope failure and slide-generated tsunami hazards with IODP 
data”. More information about the talk and the speaker can be found below or at the following 
link.  
https://usoceandiscovery.org/lecture-series/#1486138175030-dde8fc82-42a5 

 
 
Education/Events 

-SEG  

SEG 2020 annual meeting will be held in Houston, TX from Oct 11-16th. See 
https://seg.org/AM/2020/ for additional details.  

See https://seg.org/Education/Lectures/Distinguished-Lectures for information about upcoming 
SEG distinguished lecture in Houston and other locations.  

See https://seg.org/Education/Lectures/Honorary-Lectures for SEG honorary lecture locations in 
Texas. 
  
-AGU 

2019 Fall AGU annual meeting will be held in San Francisco, CA from December 9-13th, 2019. 
https://fallmeeting.agu.org/2018/future-meetings/ 
 
 

Monthly Saying 

"You can't get the grease without a lease" - Anon 
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Monthly Summary 

 

 

Subbarao Yelisetti 
President, CBGS 
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CORPUS CHRISTI GEOLOGICAL SOCIETY 
COASTAL BEND GEOPHYSICAL SOCIETY 

 

LUNCHEON MEETING 
ANNOUNCEMENT 

 
November 20, 2019 

__________________________________________________________ 
 
Location:  Water Street Events (Previously the Seafood Company 
   Restaurant) 300 Block N. Water Street, CC, TX 78401 
 
Student Sponsor: Imagine Resources, Nye Exploration, Viper Exploration, Ltd. 
 
Bar Sponsor:  Sponsorship Opportunities Available!!!!!!  
 
Time:   11:30 am Bar, Lunch follows at 11:45 am, Speaker at 12:00 pm 
 
Cost:   $30.00 (additional $10.00 surcharge without reservation;  
   NO SHOW may be billed and non-RSVP attendees cannot be 
   Guaranteed a lunch); FREE for students with reservation 
   (discounted by our generous sponsors)! 
 
Reservations: Please RSVP by 4PM on FRIDAY Nov. 15th before the meeting! 
   E-Mail:  arrangements@ccgeo.org 
 
 Please note that luncheons RSVPs are a commitment to the Water Street 
 Events and must be paid even if you can’t attend the luncheon. 
 

SPONSORSHIPS OPPORTUNITIES ARE AVAILABLE! 
IF YOU WOULD LIKETO SPONSOR, PLEASE CONTACT US AT: 

arrangements@ccgeo.org 
 

 

      
 

 

 

VIPER 
EXPLORATION, 

 
LTD 
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CCGS Luncheon Presentation – Wednesday, Nov. 20, 2019 

Water Street Seafood Co. Upstairs 

 

Early Human Interactions and Migrations – Three Mysteries 

 Neil Bockoven, PhD 

Mystery One:  Neanderthals lived in Europe for more than 250,000 years.  When we (Homo 
sapiens) arrived on the scene about 45,000 years ago, they disappeared quickly – forever.  
What happened? Five major factors played a role in the Neanderthal demise: 1) Homicide by 
modern humans, 2) Disease brought by modern humans, 3) Competition for food and resources, 
4) Our larger population absorbed their smaller one, and 5) Climate change brought on by the 
Campanian Ignimbrite eruption.  

Mystery Two:  Did we mate with Neanderthals and have viable offspring? If so, what genetics 
did we get from them?  Yes, but only interbreeding between modern human males and 
Neanderthal females seems to have produced viable offspring. From the Neanderthal genes we 
got enhanced viral immunity, but also predispositions for ailments such as lupus, Crohn’s 
disease, type 2 diabetes, actinic keratosis, and depression. 

Mystery Three:  Why is an Australian aborigine more genetically similar to a Scandinavian than 
an African tribesman is to a member of a different African tribe?  A small subset of the African 
population (with their relative lack of genetic diversity) left Africa about 70,000 years ago, and 
they populated the rest of the world. 

In addition to answering these and other intriguing questions, we’ll discuss the huge 
breakthroughs coming from ancient DNA analysis, and the different information we get from 
the three types of DNA. 

 

Neil Bockoven is an award-winning PhD geologist and journalist with 35 years of experience in 
industry. 

He has been featured in: Geological Society of America Bulletin, Association of Petroleum 
Geologists Bulletin, Virginia Journal of Science and many other scientific publications.  He is a 
repeat guest on some of the largest radio talk shows in the country, where he’s discussed a 
variety of science-based subjects as well as his books.  Neil is a member of the Archaeological 
Institute of America, the Archaeological Conservancy, and is an Impact Member of the Center 
for Study of the First Americans.  
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Neil worked as a geologist for Exxon/ExxonMobil in Denver, Midland, Houston, New Orleans 
and Albuquerque. He coordinated dozens of joint ventures with oil and gas companies, 
including rights to the entire King Ranch in Texas.  

 Neil attended The College of William and Mary, where he was a member of the state champion 
swim team, and received a Bachelor of Arts. He went on to The University of Texas at Austin, 
earning a masters and doctorate. He has published articles on topics as diverse as the geology 
of huge volcanic calderas of the Sierra Madre Occidental Mountains of Mexico to sexual 
dimorphism in Astarte clams.  

His current interests center on the interaction between Early Modern Humans and 
Neanderthals during the Paleolithic Age, and the amazing related discoveries being made 
through archaeology and genetics. In addition to Moctu and the Mammoth People, Neil has also 
published a related children’s book titled When We Met Neanderthals. 

For more about Neil Bockoven visit his Facebook page at 
www.facebook.com/authorneilbockoven/ or his web site at www.neilbockoven.com. 

 

Also - Join Neil at Lazy Beach Brewing Co., on Wednesday evening, Nov. 20th,  for 
an informal presentation to the community and book signing.  5:30 and free to 
the public. 
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Dr. Neil Bockoven
Neil Thomas Bockoven is an award-winning PhD 
geologist and journalist with 35 years of experience in 
minerals exploration. He has been featured in: 
Geological Society of America Bulletin, Association of 
Petroleum Geologists Bulletin, Virginia Journal of 
Science and many other scientific publications. He has 
appeared multiple times on several popular radio talk 
shows to discuss a variety of science-based subjects 
and his books. 

Neil worked as a geologist for Exxon/ExxonMobil in 
Denver, Midland, Houston, New Orleans and 
Albuquerque. He coordinated dozens of joint 
ventures with oil and gas companies, including rights 
to the entire King Ranch in Texas. Neil attended The 
College of William and Mary, where he was a 
member of the state champion swim team, and 
received a Bachelor of Arts. He went on to The 
University of Texas at Austin, earning a masters and 
doctorate. 

Neil has published articles on topics as diverse as the 
geology of huge volcanic calderas of the Sierra Madre 
Occidental Mountains of Mexico to sexual 
dimorphism in Astarte clams. His current interests 
center on the interaction between Early Modern 
Humans and Neanderthals during the Paleolithic 
Age, and the amazing related discoveries being 
made through archaeology and genetics. 

“When WE met Neanderthals - there were Fireworks!”

Wednesday, November 20, 2019  6:00-7:30 pm
Lazy Beach Brewing Co., Corpus Christi, Texas

FREE ADMISSION – All Ages
Books & 

Book 
Signing

Author of the Children’s Science Book – When We Met Neanderthals
15



Research Paper

749Milliken et al.  |  Channel-belt morphometrics reconstruct drainage-basin evolutionGEOSPHERE  |  Volume 14  |  Number 2

Application of fluvial scaling relationships to reconstruct drainage-
basin evolution and sediment routing for the Cretaceous and 
Paleocene of the Gulf of Mexico
Kristy T. Milliken1,*, Michael D. Blum1,*, John W. Snedden2,*, and William E. Galloway2,*
1Department of Geology, University of Kansas, Lawrence, Kansas 66047, USA
2Institute for Geophysics, The University of Texas at Austin, Austin, Texas 78758, USA

ABSTRACT

Fluvial systems represent a key component in source-to-sink analysis of an-
cient sediment-dispersal systems. Modern river channels and channel-related 
deposits possess a range of scaling relationships that reflect drainage-basin 
controls on water and sediment flux. For example, channel-belt sand-body 
thicknesses scale to bankfull discharge, and represent a reliable first-order 
proxy for contributing drainage-basin area, a proxy that is more robust if 
climatic regimes can be independently constrained. A database of morpho
metrics from Quaternary channel belts provides key modern fluvial system 
scaling relationships, which are applied to Cretaceous- to Paleocene-age flu-
vial deposits. This study documents the scales of channel-belt sand bodies 
within fluvial successions from the northern Gulf of Mexico passive-margin 
basin fill from well logs, and uses scaling relationships developed from mod-
ern systems to reconstruct the scale of associated sediment-routing systems 
and changes in scale through time.

We measured thicknesses of 986 channel-belt sand bodies from 248 well 
logs so as to estimate the scales of the Cretaceous (Cenomanian) Tuscaloosa-
Woodbine, Paleocene–early Eocene Wilcox, and Oligocene Vicksburg-Frio 
fluvial systems. These data indicate that Cenozoic fluvial systems were sig-
nificantly larger than their Cenomanian counterparts, which is consistent 
with Cretaceous to Paleocene continental-scale drainage reorganization that 
routed water discharge and sediment from much of the continental United 
States to the Gulf of Mexico. At a more detailed level, Paleocene–early Eo-
cene Wilcox fluvial systems were larger than their Oligocene counterparts, 
which could reflect decreases in drainage-basin size and/or climatic change 
within the continental interior toward drier climates with less runoff. Addi-
tionally, these data suggest that the paleo–Tennessee River, which now joins 
the Ohio River in the northernmost Mississippi embayment of the central 
United States, was an independent fluvial system, flowing southwest to the 
southern Mississippi embayment, or directly to the Gulf of Mexico, through 
the early Eocene.

Changes in scaling relationships through time, and interpreted changes in 
the scales of contributing drainage basins, are generally consistent with pre-
viously published regional paleogeographic maps, as well as with newly pub-
lished maps of paleodrainage from detrital-zircon provenance and geochrono
logical studies. As part of a suite of metrics derived from modern systems, 
scaling relationships make it possible to more fully understand and constrain 
the scale of ancient source-to-sink systems and their changes through time, or 
cross-check interpretations made by other means.

INTRODUCTION

Source-to-sink (S2S) approaches to stratigraphic research focus on recon-
structing and predicting sediment production, transport, and storage through 
fluvial systems, delivery rate to deltaic and deepwater sediment sinks, and 
how allogenic signals and autogenic self-organization are preserved in the an-
cient stratigraphic record (Romans et al., 2016). Scaling relationships represent 
an important part of an S2S approach, because sediment and water flux, and 
the dimensions of modern sediment-dispersal system segments, scale to con-
tributing drainage area (e.g., Syvitski and Milliman, 2007; Sømme et al., 2009; 
Helland-Hansen, 2016). Scaling relationships in sediment-dispersal systems 
generally follow power laws, where absolute dimensions are proportional to 
drainage-basin size and the corresponding flux of water and sediment, and 
parameters like grain size and transport slope scale inversely (e.g., Sømme 
et al., 2009). From the above, the scales and properties of segments within 
a sediment-dispersal system correlate to water and sediment flux from the 
drainage basin, and more importantly, the scales and properties of one seg-
ment within a sediment-dispersal system are therefore inherently related to, 
and can be predicted from, the scales and properties of another.

This paper applies empirical scaling relationships from modern systems 
to reconstruct the scales of fluvial systems for Late Cretaceous, Paleocene–
earliest Eocene, and Oligocene sediment-dispersal systems of the northern 
Gulf of Mexico sedimentary basin from subsurface data, in this case well logs. 
This paper is conceptually linked to those of Blum et al. (2017), who recon-
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structed drainage areas for the same stratigraphic intervals from detrital zircon 
U-Pb provenance and geochronological data; Snedden et al. (2018), who quan-
tified changes in the scale of Gulf of Mexico basin-floor fans through time from 
subsurface data; and Xu et  al. (2017), who focused on reconstructing early 
Miocene fluvial systems from both detrital-zircon and well-log data. Collec-
tively, these papers are designed to use the data-rich northern Gulf of Mexico 
margin to test the utility of a semiquantitative S2S approach to reconstructing 
paleodrainage and sediment routing at the continental scale, and prediction of 
the scales of basin-floor fans in the terminal sink.

GULF OF MEXICO STRUCTURAL AND STRATIGRAPHIC CONTEXT

The northern Gulf of Mexico is a well-known sedimentary basin, with many 
studies that document tectonic evolution of the basin, as well as the Mesozoic 
to Cenozoic stratigraphic framework (see the summary in Galloway, 2008, and 
references herein). Early to middle Mesozoic paleogeographic evolution of the 
early northern Gulf of Mexico can be tied to initial rifting and breakup of Pan-
gea, distribution and nature of basement crust (Sawyer et al., 1991; Peel et al., 
1995; Bird et al., 2005), margin type (Marton and Buffler, 1993), and Jurassic 
salt deposition (Martin, 1978; Sawyer et al., 1991). During the Jurassic to mid-
dle Cretaceous, the Gulf of Mexico margin was dominated by a carbonate 
ramp with little clastic sediment dispersal to deepwater environments (Rain-
water, 1967; Anderson, 1980; Winker and Buffler, 1988; Yurewicz et al., 1993).

Studies pertinent to early Gulf of Mexico sediment source regions suggest 
there was a continuous upland that connected the Appalachian and Ouachita 
Mountains through the early Cretaceous (Thomas, 1985; Viele and Thomas, 
1989; Hale-Erlich and Coleman, 1993), followed by the initial breaching of 
the Mississippi embayment during the late Cretaceous to early Paleocene, 
perhaps in response to hot-spot activity that resulted in thermally generated 
uplift, erosion, and subsidence as the hot-spot location moved to the east 
(Van Arsdale and TenBrink, 2000; Cox and Van Arsdale, 2002; Whitaker and 
Engelder, 2006; Matton and Jébrak, 2009). Igneous activity (Moody, 1949; Kid-
well, 1951; Baksi, 1997) and regional uplift (Anderson, 1980; Ewing, 1991; Harry 
and Londono, 2004) are linked to the late Cretaceous initiation of the modern 
Mississippi embayment (Cushing et al., 1964; Ervin and McGinnis, 1975; Kane 
et al., 1981; Baksi, 1997). In addition to a broad deepening of basement from 
onshore to offshore, a number of basement arches or broad uplifts rim the 
northern Gulf of Mexico basin (Bornhauser, 1958; Martin, 1978; Dallmeyer, 
1989; Ewing, 1991) (Fig. 1) and influence sediment routing and accumulation 
patterns by subtly affecting accommodation and deformation. Throughout 
the Mesozoic to Cenozoic, these local, long-lived uplifts and arches impacted 
deposition and funneled sediment fairways through the interior salt basins, 
Mississippi embayment, Houston embayment, and Rio Grande embayment 
(Jung Echols and Malkin, 1948; Granata, 1963; Seni and Jackson, 1984; Law-
less and Hart, 1990; Nunn, 1990; Xue, 1997; Ambrose et al., 2009; Adams and 
Carr, 2010) (Fig. 2).

Cenomanian Tuscaloosa-Woodbine fluvial-deltaic systems represent the 
first instance that clastic sediments prograded across the preexisting broad 
carbonate-dominated shelf and delivered a significant volume of sediment to 
the shelf margin and beyond (Barrell, 1997; Funkhouser et  al., 1981; Dubiel 
et al., 2003). Commencing in the late Paleocene to early Eocene and persisting 
throughout the Oligocene, clastic influx significantly increased and was fun-
neled through large fluvial systems centered in the Houston, Mississippi, and 
Rio Grande embayments (Stearns MacNeil, 1966; Galloway, 2005; Galloway 
et al., 2011) (Fig. 3).

In the Jurassic to Cenozoic strata, workers have long recognized large-scale 
packages of sediment that are bounded above and below by regional flood-
ing surfaces. They have described these packages as transgressive-regressive 
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(TR) cycles of terrigenous offlapping wedges (Claudet, 1950; Stearns, 1957; 
Martin, 1978; Mitchum and Van Wagoner, 1991; Mancini and Puckett, 2005) 
(Fig. 4) and have placed them into a sequence stratigraphic framework. The 
progradational parts of the packages are prone to preserve the target fluvial 
facies (e.g., Baum and Vail, 1988; Galloway et al., 2000; Mancini et al., 2008). 
This study utilizes this preexisting stratigraphic framework to recognize and 
extract metrics from the fluvial channel belts preserved within the terrigenous 
offlapping wedges (TR cycles). Furthermore, the results of this study provide 
an independent test of preexisting maps delineating North American Cenozoic 
drainage-basin evolution (Galloway, 2005; Galloway et al., 2011).

In addition to empirical scaling relationships to derive drainage-basin size, 
recent studies have utilized geochronological tools including detrital zircon to 
test the provenance and drainage-basin configuration for the northern Gulf of 
Mexico basin during the Late Cretaceous to Eocene (Mackey et al., 2012; Blum 
and Pecha, 2014; Blum et al., 2017; Wahl et al., 2016). Their findings provide 
alternatives and/or modifications to the paleodrainage configurations as out-
lined by Galloway et al. (2011). Geochronological tools such as detrital zircon 
provide a direct means to locate the source of sediment (provenance) and up-
dip extent for a drainage basin.

This study builds on an established regional stratigraphic framework for 
the northern Gulf of Mexico derived from well logs and seismic data that, in 
conjunction with biostratigraphic zonation, provide chronostratigraphic con-
trols (Galloway, 2008; Mancini et al., 2008).

METHODS

This study is grounded on recognition and measurement of channel-
related sand bodies of fluvial origin in subsurface data. For the purposes of 
this paper, we use the term “point bar” to represent a morphological feature 
in rivers that develops on concave banks, and accumulates sand primarily 
by lateral accretion. Following Blum et al. (2013, and references therein), we 
use the term “channel belt” to define the area over which a channel has 
migrated during a specific interval of time, and the term “channel-belt sand 
body” represents the deposit that forms from that lateral migration. Most 
channel belts are active over a few thousands of years (not tens or hundreds 
of thousands): Additionally, low-gradient coastal-plain rivers typical of pas-
sive-margin settings like the Gulf of Mexico consist of channel-belts that are 
constructed by a continuum of highly migratory to non-migratory channels. 
Highly migratory channels construct multiple point bars that are laterally 
amalgamated with channel-belt widths being 7–30 times the active channel 
width; whereas non-migratory channels construct a single narrow point bar 
that has migrated only 2–5 times the channel width (Fig. 5). Blum et al. (2013) 
and Fernandes et  al. (2016) showed that these end members characterize 
positions that are above and below the backwater limits respectively, where 
lateral migration rates decrease, aggradation and avulsion become common, 
and the river channel system becomes distributive in the backwater zone. 
The net result is that channel-belt width-to-thickness (W:T) ratios decrease 
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substantially downstream through the backwater transition, from 70:1–300:1 
or more to 20:1–50:1.

Most channel-related fluvial sand bodies are deposited as a series of bars 
by lateral accretion, and produce a general fining-upwards pattern of grain 
size and thinning of bed sets. Early studies of modern Gulf of Mexico point 
bars and valley fills by Bernard et al. (1970) and Coleman and Prior (1982) 
established recognition criteria for fluvial channel-belt sand bodies from well 
logs. Bridge (1993; see also Bridge, 2003; Bridge and Lunt, 2006) showed 
that, within this general template, multiple log patterns can result, depend-
ing on upstream versus downstream position within the bar itself (Fig. 6). 
Heterolithic bar-top facies form at elevations up to bankfull stage, but likewise 
vary in terms of grain size, and, when muddy, can be difficult to differentiate 
from near-channel overbank facies. Regardless, vertical variation in grain size 

translates to vertical patterns that are identifiable in gamma ray, resistivity, 
and Spontaneous Potential well logs (Fig. 6), which are commonly used to 
interpret and correlate sedimentary deposits in the subsurface. Hence, well-
log shape can be used to identify channel-belt sand bodies in subsurface data: 
as noted by Bridge and Tye (2000), no single well log can be representative, 
but sand-body thicknesses measured from multiple well logs are a proxy for 
bankfull depth.

Blum et al. (2013) presented a series of scaling relationships for modern 
river systems that represents an earlier generation of the data used here, and 
which is included in the Supplemental Data1. The morphometrics of 279 mod-
ern channel belts were collected from studies of more than 60 rivers that span 
drainage basin sizes from 120 km2 to 3,000,000+ km2, in climatic conditions 
ranging from tropical to periglacial (Blum et al., 2013; Supplemental Data [foot-
note 1]). The planform measurements of a meander involved digitization of a 
georeferenced point-bar deposit and associated channel using Google Earth 
(open-platform software, https://​www​.google​.com​/earth​/desktop/). The chan-
nel represents the abandoned channel, and is likely filled with finer-grained 
sediment, whereas the point bar or meander refers to the compound bar or 
storey composed of coarser-grained sediment. The digitized polygons were 
transferred to ESRI ArcGIS software (http://​www​.esri​.com​/arcgis​/about​-arcgis) 
with an equal area projection. ArcMap was used to calculate the area (in m2). 
The perimeter of the channel (or abandoned channel) was divided by two to 
get an approximate length (in m) of the channel, which provided a consistent, 
reproducible method if not exactly accurate. The average width of the channel 
or abandoned channel was computed by dividing the calculated area (in m2) 
by the length (in m). A minimum rectangular bounding container was used to 
extract the long and short axes of the point bar. Visual inspection was used 
to differentiate whether the long or short axis was the expansion length. 
The amplitude length was used as a proxy for a minimum meander-belt or 
channel-belt width. The half-wavelength measurement was extracted along 
the downstream direction of the meander. Measured parameters are illus-
trated in a schematic diagram in Figure 7. Holocene channel-belt deposits are 
readily linked via stream gauge measurements to channel-forming discharge. 
Only rivers that have been sufficiently studied to supply reliable bankfull depth 
and complete point-bar measurements from either lithological descriptions or 
stream cross sections were included.

Most important here would be power-law relationships between drainage 
area and bankfull discharge (see also Davidson and North, 2009), and between 
bankfull discharge and sand-body thickness: these two relationships can be 
combined to give a relationship between drainage area and sand-body thick-
ness (Fig. 8A; Supplemental Data [footnote 1]). We treat these as first-order 
relationships, and a number of uncertainties must be kept in mind. First, there 
is inherent variation within a single river system due to variation in flow depth: 
at the local scale, variation in depth occurs within single meander bends, 
whereas regionally, downstream increases in flow depth occur from tributary 
inputs and/or flow dynamics within the backwater reach (Fig. 8B). Based on 
the modern and Holocene Mississippi River, variations in channel depth of 
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Well-log identification of channel belts

As described in classic works by Allen (1978), Bernard et al. (1970), Jackson 
(1976,1977) and summarized by Bridge (2003), fluvial channel belts and abandoned 
channels have typical blocky to fining upward lithologic patterns (Collinson, 1978). The 
shape of the lithological variation translates roughly to shape of well logs such as, 
gamma ray, resistivity, and SP (Fig 1).   The shape of the well log can be used as an 
indicator of depositional environment and sandstone body type.  Wireline log shapes 
are often described as funnel - ‘upward coarsening’, bell - ‘upward fining, cylinder-
‘blocky’ and further described as smooth or serated (Cant 1984; Snedden 1984,
Scheihing and Atkinson 1992; Bridge and Tye, 2000).  However, log shape in gamma 
ray or SP (spontaneous potential) in siliciclastic rocks is related more to argillaceous 
content than to grain size.   The coarser-grained material at the base typically exhibits
low gamma ray, and an excursion in the SP and resistivity (direction varies depending 
upon salinity and fluid content of pore waters) grading into or overlain by finer-grained 
material (commonly containing increase argillaceous content) exhibiting slightly higher 
gamma ray or less excursion in the SP/Resistivity curves and producing the ‘blocky’ or 
‘bell’ shaped curve as illustrated in the SP wireline log curves of Figure 1.

For example, in the modern Brazos river, several boreholes were drilled through 
a meander bend and logged with SP tool (Bernard et al 1970).  These curves illustrate 
the ‘fining upward’ as well as serrated blocky wireline shapes observed in fluvial 
channel belt deposits.  Additionally, the channel belt wireline log signature can be 
compared to a typical abandoned channel wireline log signature.  The abandoned 
channel wireline log signature typically contains a blocky to serrated pattern at the base 
that is sharply overlain by serrated low SP or Gamma Ray.  The blocky to serrated
pattern at the base indicates coarser-grained flood scour deposits overlain by finer-
grained abandoned channel fill which is typically muddy (Fig. 2).  The channel-belt 
sandbodies (commonly described as point bars in the literature) are the fundamental 
building block of coarse-grained fluvial deposits in modern systems as well as the 
stratigraphic record (e.g. Karges 1962; Berg and Cook 1968; Fisher and McGowen 
1969).

1Supplemental Files. Text, 11 figures, Quaternary 
database, and Gulf of Mexico channel-belt measure-
ment database. Please visit http://​doi​.org​/10​.1130​
/GES01374​.S1 or the full-text article on www​.gsapubs​
.org to view the Supplemental Files.
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this kind are less than a factor of two (see also Bridge and Tye, 2000). Second, 
variations in bankfull discharge and depth occur between river systems due 
to differences in climate regimes: holding drainage area constant, river sys-
tems in humid or highly seasonal monsoonal climates will have larger bank-
full discharge values than river systems in cold and/or dry climates (see Plink-
Björklund, 2015). However, data from modern systems show that variations of 
this kind result in bankfull depths from individual river systems that are within 
a factor of two of the regressed values for drainage basin areas within the 
population as a whole (Fig. 9).

We have examined 1879 well logs from the Gulf Basin Depositional Synthe-
sis (GBDS) Program database at the Institute of Geophysics of The University 
of Texas at Austin. We focus on fluvial and coastal-plain stratigraphic intervals 
in the Cenomanian Tuscaloosa-Woodbine, Paleocene to early Eocene Wilcox, 
Eocene Queen City and Yegua, and Oligocene Vicksburg-Frio depositional epi
sodes (Galloway, 2008; Galloway et al., 2011). From these well logs, we have 
compiled 986 measurements of channel-belt thickness from 248 well logs for 
these stratigraphic units across the Gulf of Mexico coastal plain, in an area 
stretching from south Texas to southern Mississippi. We focus on intervals that 
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contain channel-belt sand bodies but are otherwise dominated by floodplain 
mudrocks and organic-rich facies (Fig. 5; Supplemental Data [footnote 1]), 
which we interpret to represent distributive channel belts that formed within 
the backwater reach. Figure 10 illustrates this approach with well logs from 
the Cenomanian Woodbine Group in east Texas (Ambrose et al., 2009) and the 
Paleocene Wilcox Group in central Louisiana (Tye et al., 1991). Uncertainties 
in measurements are likely due to difficulties in recognition of channel-belt 
sand-body boundaries within an individual well log. In some cases, this may 
reflect muddy upper-bar facies that make identification of the upper limits dif-
ficult, resulting in underestimation of bankfull depth. In other cases, individual 
channel-belt sand bodies may stack on top of each other and be impossible to 
differentiate, resulting in overestimation of bankfull depth.

We bin well-log measurements by stratigraphic unit and geographic area, 
and follow conventions in Galloway et al. (2011) and Blum et al. (2017), where 

ancient fluvial axes are named for extant river systems in the area today. 
For each paleo–fluvial axis and stratigraphic interval, measured channel-belt 
sand bodies are compiled into probability density functions (PDFs) and 
cumulative-frequency curves to show thickness distributions; the number 
of measurements per stratigraphic unit per fluvial axis ranges from n = 10 
to n = 143 (Figs. 11 and 12). Even with uncertainties from natural variability 
and measurement issues, sand-body thickness populations vary significantly 
and systematically. For example, statistical analysis involving t-tests of two 
samples assuming unequal variances on Cenomanian versus lower Wilcox 
channel-belt deposits for the paleo–Tennessee River and paleo–Mississippi 
River fluvial axes shows statistically significant differences in sand-body 
thickness populations.

Using a best-fit equation between modern sand-body thickness and con-
tributing drainage-basin area, we estimate a range of contributing drainage 
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areas for ancient systems from PDF peaks and the P90 value in cumulative 
frequency curves. The P90 value is the 90% statistical confidence that the 
channel-belt measurements have captured the thickness of the representa-
tive channel and drainage basin. Although we measured sand bodies in the 
Eocene Queen City and Yegua intervals, we focus here on the Cenomanian 
Tuscaloosa-Woodbine, the Paleocene–early Eocene Wilcox, and the Oligo-
cene Vicksburg-Frio episodes. All data are included in the Supplemental Files 
(footnote 1).

APPLICATION TO CENOMANIAN AND PALEOCENE 
GULF OF MEXICO SYSTEMS

For each paleo–fluvial axis and interval, the measured channel belts are 
visualized as PDFs in order to understand the thickness populations that 
compose that particular fluvial system (n = 10 to n = 143; Fig. 12). Analysis of 
fluvial channel-belt thickness through time and space shows significant thick-
ness variations. Natural thickness variations in a population of channel belts 
representing one fluvial axis can be explained as (1) variability in the basal 
erosion surface, which can account for up to twice mean bankfull thickness 

(Leopold et al., 1962; Willis, 1989; Salter, 1993; Willis and Tang, 2010; Supple-
mental Files [footnote 1]), and (2) variable-size fluvial systems residing within 
a fluvial axis during a stratigraphic interval (Supplemental Data [footnote 1]). 
Therefore, many channel-belt thickness measurements are required to charac-
terize the fluvial system(s). Significant fluvial system preservation correlates 
with mapped shelf progradation. For example, during the lower Wilcox depo-
sode, measurable fluvial channel belts correlate with significant shelf-margin 
progradation in the fluvial axes (Fig. 11). Fluvial channel belts and/or alluvial 
deposition are not readily recognized in other areas of the northern Gulf of 
Mexico basin during this time and are not recognized as fluvial axes (Galloway 
et al., 2000; Galloway, 2008). Similar correlations are illustrated for the upper 
Wilcox and the Oligocene (Fig. 11).

Cenomanian Tuscaloosa-Woodbine

The Upper Cretaceous Cenomanian interval includes the Woodbine Group 
of the East Texas Basin and North Louisiana Salt Basin, and the Tuscaloosa 
Formation of the Mississippi Salt Basin. Cenomanian channel-belt thicknesses 
in the East Texas Basin paleo–Colorado River fluvial system (n = 23) range 
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from 9 to 24 with a peak at 15 m (Fig. 12). Channel-belt thicknesses in the 
North Louisiana Salt Basin paleo-Mississippi fluvial system (n = 19) show a 
distinctive peak at 6 m. The Cenomanian strata (Tuscaloosa) in the Missis-
sippi Salt Basin paleo-Tennessee fluvial system (n = 53) exhibit channel-belt 
thicknesses that range from 6 to 24 m with a major peak at 14 m and a minor 
peak at 18 m.

Early–Middle Paleocene Lower Wilcox

The Paleocene lower Wilcox interval contains significant fluvial axes in the 
paleo–Rio Grande, paleo-Colorado, paleo-Mississippi, and paleo-Tennessee 
systems (n = 42, n = 108, n = 143, n = 47, respectively; Fig. 12). The majority of 
the paleo–Rio Grande channel-belt thicknesses range from 9 to 33 m with PDF 
peaks at 15, 24, and 33 m (Fig. 12). Out of 42 interpreted channel belts, four 
were between 33 and 36 m thickness and represent another population peak. 
The paleo-Colorado channel-belt thicknesses range from 9 to 48 m with three 
prominent PDF peaks at 24, 29, and 36 m. The 29 m peak contains a coarse tail 
which tapers off at 42 m. The paleo-Mississippi fluvial axis contains a channel-

belt thickness population (n = 143) with a P90 of 26 m and PDF peaks at 15, 
23, and 33 m. The 15 m PDF peak was generated from channel belts situated 
between the Monroe uplift and the LaSalle Arch.

Late Paleocene–Early Eocene Upper Wilcox

The Eocene upper Wilcox fluvial axes occur in the paleo–Rio Grande, paleo-
Colorado, paleo–Houston-Brazos, paleo-Mississippi, and paleo-Tennessee 
systems (Fig. 12). The South Texas paleo–Rio Grande channel-belt thickness 
population (n = 31) averages 21 m with dominant peaks at 18 m and 24 m and 
a lesser peak at 33 m (Fig. 12). The upper Wilcox paleo-Colorado channel-belt 
thickness population (n = 15) averages 24 m with prominent peaks at 12 m, 
24  m, and 30  m and a coarse tail at 38  m. The upper Wilcox paleo–Hous-
ton-Brazos channel-belt thickness population (n  = 10) shows three peaks at 
12 m, 18 m, and 33 m. The upper Wilcox paleo-Mississippi channel-belt thick-
ness population (n = 41) averages 23 m with peaks at 15 m, 21 m, 36 m, and 
51 m. The upper Wilcox paleo-Tennessee channel-belt thickness population 
(n = 11) shows a peak at 16 m.
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Oligocene Vicksburg-Frio

The Oligocene Frio Formation fluvial axes can be documented in the paleo–
Rio Grande, paleo-Colorado, paleo–Houston-Brazos, and paleo-Mississippi 
systems (Fig. 12). The paleo–Rio Grande channel-belt thickness population (n = 
54) has a P80 of 24 m and prominent peaks at 15 m, 24 m, and 30 m (Fig. 12). 
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The paleo-Colorado channel-belt thickness population (n = 45) averages 24 m 
with dominant PDF peaks at 15 m, 21 m, and 36 m, and a less-prominent peak 
at 52 m. The paleo–Houston-Brazos channel-belt thickness population (n = 26) 
averages 17 m with dominant peaks at 12 m and 18 m and less-prominent 
peaks at 27 m, 39 m, and 45 m. The paleo-Mississippi channel-belt thickness 
population (n = 135) averages 24 m with dominant peaks at 15 m and 21 m and 
a less-prominent peak at 35 m.

Changes in Fluvial Systems through Time and Space

Comparison amongst fluvial systems illustrates differences in fluvial chan-
nel-belt thickness. Application of analog modern fluvial-system thickness–drain-
age basin size correlations suggests that thickness of channel belts in ancient 
systems should also scale to paleo–drainage basin size. Cenomanian fluvial sys-
tems have significantly thinner channel belts as compared to Paleocene paleo-
Colorado and paleo-Mississippi lower Wilcox fluvial systems (Fig. 13A).

The P90 channel thickness of the fluvial systems of the lower Wilcox 
(Paleocene) to upper Wilcox (early Eocene) increase in the paleo-Mississippi 
fluvial axis, but appear stable in the paleo–Rio Grande and the paleo-Colo-
rado axes. The paleo–Houston-Brazos fluvial system, while prominent during 

the Paleocene, is not a significant fluvial axis during the early Eocene (upper 
Wilcox) (Fig. 13B).

The Oligocene paleo-Colorado fluvial system contains slightly thicker 
channel belts as compared to the lower Wilcox paleo-Colorado. The paleo–Rio 
Grande fluvial system contains comparable fluvial channel belts in the Oligo-
cene as compared to the Paleocene. The Oligocene paleo-Mississippi fluvial 
system exhibits thicker P90 channel belts than the lower Wilcox (Paleocene) 
paleo-Mississippi (Fig. 13C).

A particular paleo–fluvial system can also be temporally analyzed using 
this methodology. For example, the paleo–Rio Grande fluvial system is rela-
tively small during the Paleocene, but systematically grows in discharge and 
fluvial channel-belt thickness through the Eocene and is relatively small again 
in the Oligocene (Fig. 13D).

DISCUSSION

Probability Density Function Interpretation

As outlined in the methodology, care was taken to identify intervals and 
regions of the progradational clastic wedge packages where fluvial channel 
belts encased in floodplain muds were likely to have been deposited and pre-
served, in order to minimize thickness overestimation due to vertical chan-
nel-belt amalgamation or underestimation due to partial preservation. Many 
channel-belt measurements were also made to produce a population of 
channel-belt thickness for a given interval and region in order to encompass 
the potential range of thickness inherent in a fluvial system. Channel-belt mea-
surements typically cluster into modes that translate into peaks in a population 
PDF. The thickness difference within a mode typically varies by a factor of two 
and may illustrate a channel-belt population’s inherent thickness variation due 
to lateral migration. (For discussion on inherent thickness variation within a 
channel belt, see the supplemental information [footnote 1].)

For each paleo–fluvial axis, the population of thickness measurements 
exhibited one to five PDF peaks (Fig. 12). Multiple PDF peaks could be due 
to multiple, various-size fluvial systems feeding sediment into an area and/or 
interval. Multiple PDF peaks for a paleo–fluvial axis may also indicate mea-
surement of a population of channel belts and distributary channels. Because 
channel-belt thickness is largely controlled by bankfull discharge within the 
fluvial channel, factors that affect the water discharge of a drainage basin will 
affect the channel-belt thickness. For example, in small (<100,000 km2) drain-
age basins, the channel belts deposited by fluvial systems draining humid 
climatic regimes are thicker (by a factor of about two) than channel belts de-
posited by fluvial systems draining arid climates (supplemental information 
[footnote 1]). Once a drainage basin increases in size to very large to continen-
tal scale, the climate influence on channel-belt thickness may not be as import-
ant due to (1) the likelihood of very large drainage basins traversing multiple 
climatic zones and (2) significant discharge.
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measurements (Supplemental Data [foot-
note 1]), but are not discussed in detail in 
the text of this paper.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/4101759/749.pdf
by guest
on 12 September 2019

34

http://geosphere.gsapubs.org


Research Paper

760Milliken et al.  |  Channel-belt morphometrics reconstruct drainage-basin evolutionGEOSPHERE  |  Volume 14  |  Number 2

The 90th percentile (P90) thickness was transformed into a representative 
drainage basin size using the Quaternary channel-belt database and best-fit 
line y = 249 * x 2.44 (Fig. 8A), as shown in Table 1. The P90 thickness value was 
chosen to reconstruct the paleo–drainage basin because this thickness most 
likely represents bankfull discharge of the trunk channel. As noted above, there 
are multiple possible explanations for the thinner populations of channel belts 
in a fluvial axis: the population might contain (1) measurements of distributary 
or anastomosing channels in addition to the trunk channel belts, and/or (2) trib-
utary fluvial system channel belts (for additional description, see the supple-
mental information [footnote 1]). The most representative drainage basin area 
when describing the ability of the fluvial system to supply sediment to the 
margin is also generally the largest. Generally, the larger the drainage basin 
area, the greater the ability of the associated fluvial system to supply water and 
sediment to the margin. Fluvial systems’ distributive channels that transport 
more water and sediment are also thicker and result in thicker channel-belt 

deposits. Comparison of drainage basin size derived from channel-belt thick-
ness shows a statistically significant correlation to drainage basin size derived 
from detrital zircon studies (Fig. 14; Blum et al., 2017).

Cenomanian Tuscaloosa-Woodbine

Cenomanian paleo–drainage basins for the paleo-Tennessee and paleo-
Colorado had their uplands in the Ouachita and Appalachian Mountains and 
were on the order of 200,000 km2 (Table 1; Blum et al., 2017; Fig. 14). The paleo-
Tennessee channel-belt thickness is not significantly greater than that of other 
Cenomanian fluvial systems, but considering an arid climate in the Missis-
sippi Salt Basin area as compared to the East Texas Basin (Chasteen, 1983), the 
paleo-Tennessee drainage basin might have been significantly larger. Channel-
belt thicknesses in the East Texas Basin and North Louisiana Salt Basin are 
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consistent with published well logs and conventional wisdom that links the 
East Texas and North Louisiana Salt Basin fluvial systems to a provenance in 
the Ouachita uplands (Adams and Carr, 2010; Ambrose et al., 2009; Barton, 
1982; Berg and Leethem, 1985; Bonnaffé et al., 2008; Bunge, 2007; DeDomi
nic, 1988; Dolloff et  al., 1967; Halbouty and Halbouty, 1982; Harrison, 1980; 
McGowen and Lopez, 1983; Oliver, 1971; Scott, 1926; Stehli et al., 1972; Turner 
and Conger, 1984).

The channel-belt thicknesses measured in the Mississippi Salt Basin are 
also consistent with published well logs and literature that links the fluvial sys-
tems near the Mississippi-Louisiana state line to the Appalachian Highlands 
(Adams and Carr, 2010; Berg and Cook, 1968; Blum et al., 2017; Corcoran et al., 
1993; Cronquist and Aime, 1968; Eisenstatt, 1960; Garrison and Chancellor, 
1991; Gruebel, 1985; Hamlin and Cameron, 1987; Hogg, 1988; Karges, 1962; 
Klicman et al., 1988; Moore, 1962; Raymond, 2005; Stancliffe and Adams, 1986; 
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Figure 13. Cumulative frequency plots. The symbols numbered 1–5 designate relative age channel-belt thickness populations. (A) Comparison of channel-belt thickness between 
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Stephenson and Monroe, 1938; Stevenson, 1981; Wiygul and Young, 1987; 
Womack, 1950). Several studies documented the paucity of fluvial strata and 
significant shallow-marine and deltaic strata in southern Alabama, Florida, 
and western Georgia (Munyan, 1943; Mancini and Payton, 1981; Mancini et al., 
1987; Mancini and Tew, 1995; Petty, 1997; Warner, 1993, Galloway, 2008), which 
is consistent with a fluvial fairway from the Appalachians to southwestern 
Mississippi.

The abundance of lignite interspersed in coastal plain environments can 
be utilized as an indicator of groundwater inundation and climate. The Ceno-
manian strata of the Mississippi Salt Basin (paleo-Tennessee) do not contain 
significant lignite and are interpreted to represent a semi-arid climate, whereas 
the Cenomanian strata of the East Texas Basin (paleo-Colorado) contain abun-
dant lignite and are interpreted to represent a humid climate (Chasteen, 1983).

Early–Middle Paleocene Lower Wilcox

The lower Wilcox paleo-drainages expanded significantly, a finding 
similar to those of previous studies (Galloway, 2005; Galloway et al., 2011; 
Mackey et  al., 2012; Blum and Pecha, 2014). This study suggests that the 
catchment area or drainage basin of the lower Wilcox paleo-Colorado 
was continental scale (Blum et al., 2017; Table 1; Fig. 14). In contrast to the 
20–30+-m-thick preserved channel belts in the paleo-Colorado fluvial axis, 
the paleo-Tennessee fluvial axis may be represented by the 16–17 m PDF 
peak generated from channel belts situated between the Monroe uplift 
and the LaSalle Arch. The differences in preserved channel-belt thickness 
between fluvial axes (e.g., paleo-Colorado versus paleo-Tennessee) lend 
credence to the fidelity of the stratigraphic record and faithful preservation 
of fluvial scales in ancient strata.

Previously published lower Wilcox stratigraphic studies that document 
blocky to fining-upward patterns in well logs, indicative of storeys or chan-
nel belts, are consistent with the channel-belt thickness populations collected 
in the present study. Wilcox-equivalent strata in northern Mississippi contain 
blocky to fining-upward patterns in well logs in lignite-rich fluvial strata on the 
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Figure 14. Plots of reconstructed drainage area from point-bar scales and detrital 
zircon (DZ) provenance studies (Blum et al., 2017). Data is shown in Table 1.

TABLE 1. SUMMARY OF PALEODRAINAGE RECONSTRUCTIONS, GULF OF MEXICO BASIN

Paleodrainage system

P90 point-bar 
thickness

(m)

Reconstructed drainage area 
from point-bar scales

(km2)

Reconstructed drainage 
area from DZ studies

(km2)

Cenomanian paleo-Tennessee 17 250,000 400,000
Cenomanian paleo–Colorado*-Brazos 16 220,000 <150,000
Early Paleocene paleo-Mississippi 32 1,170,000 1,200,000
Early Paleocene paleo-Colorado 35 1,460,000 2,200,000
Early Paleocene paleo–Rio Grande 30 1,000,000 500,000
Late Paleocene to earliest Eocene paleo-Mississippi 48 3,150,000 2,200,000
Late Paleocene to earliest Eocene paleo-Colorado 34 1,360,000 1,200,000
Oligocene paleo-Mississippi 38 1,780,000 1,500,000
Oligocene paleo–Colorado**-Brazos 37 1,670,000 600,000
Oligocene paleo–Rio Grande 28 850,000 700,000

Note: P90 point-bar thickness is the statistical cumulative value that captures 90% of the channel-belt thickness measurements within a given channel-belt population.
Drainage area values are plotted in Figure 14. Reconstructed drainage areas from detrital zircon (DZ) studies are from Blum et al. (2017).

*This study’s Cenomanian paleo-Colorado is equivalent to the Cenomanian paleo–Colorado-Brazos of Blum et al., 2017.
**This study’s Oligocene paleo-Colorado and paleo–Houston-Brazos (Figs. 2 and 12) is equivalent to the Oligocene paleo–Colorado-Brazos of Blum et al. (2017).
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order of 15 m thick in NE-SW–oriented mapped sand bodies (Cleaves, 1980; 
Dueitt et al., 1985; Glawe et al., 1999; Hackley et al., 2007). Paleocene to Eocene 
strata in southwestern Mississippi are described as shallow marine, with little 
evidence for significant fluvial strata recorded (Dockery, 2001). Galloway (1968) 
documented lignite-rich fluvial strata within the Mississippi embayment from 
fluvial systems that fed deltas that were similar in scale to Rockdale delta lobes 
in Texas. Tye et al. (1991) published long regional well-log cross sections in 
the Wilcox strata of the Mississippi embayment that illustrate 20–30+-m-thick 
blocky to fining-upward log patterns in the fluvial intervals (Fig. 9). In central 
Texas, the lower Wilcox also contains 20–30+-m-thick blocky to fining-upward 
fluvial channel belts (Devine and Wheeler, 1989; Xue and Galloway, 1993). In 
South Texas, paleo–Rio Grande abundant lignite deposits attributed to peat 
swamps indicate a relatively humid climate (Breyer, 1997).

The significant variation of channel-belt thickness between 11 and 13 m in 
Cenomanian fluvial systems and 20–30+ m in Paleocene fluvial deposits coin-
cides with documented plate-scale tectonic reorganization involving the Lara-
mide orogeny (Galloway et al., 2000) and significant clastic flux to the northern 
Gulf of Mexico basin (Galloway, 2008).

Late Paleocene–Early Eocene Upper Wilcox

As described in the lower Wilcox section above, previous studies have 
documented 20–30+-m thick blocky to fining-upward well-log patterns in the 
upper Wilcox–age fluvial strata of the Mississippi embayment (paleo-Missis-
sippi) and Houston embayment (paleo-Colorado; Xue and Galloway, 1995; Tye 
et al., 1991). Additionally, Cleaves (1980) and Hackley et al. (2007) did not dif-
ferentiate the Wilcox into upper or lower in central to northern Mississippi, 
but illustrate 8–15-m-thick blocky to fining-upward storeys or channelbelts in 
lignite-rich mudstones, which is consistent with the thicknesses documented 
for the paleo-Tennessee. Dingus and Galloway (1990) showed a 37-m-thick 
fining-upward log pattern in upper Wilcox strata overlying Yoakum canyon, 
an interpreted buried submarine channel situated on the slope. This 37-m- 
thick fining-upward sequence could be interpreted as a channel belt. In South 
Texas, the upper Wilcox is composed of a prograding fluvial-deltaic system 
with 20–30-m-thick blocky to fining-upward channel belts (Edwards, 1981; 
Hamlin, 1983).

Previous studies that describe the depositional facies for the Eocene-age 
Queen City Formation (cite Fig. 3) included shallow-marine deposits in central 
Texas (Guevara and Garcia, 1972) and east Texas (Ramos and Galloway, 1990). 
A lack of fluvial channel belts in fluvial axes could be due to post-depositional 
passive-margin uplift and erosion of the particular facies or non-preservation 
because of reworking by shallow-marine processes into shallow-marine strata.

During the period correlative to the Yegua Formation, a modest rejuve-
nation of sediment influx related to middle Cenozoic volcanism in the Rocky 
Mountains resulted in fluvial progradation (Galloway, 2008) and an increase in 
mass wasting at the shelf margin (Edwards 1990, 1991).

Oligocene Vicksburg-Frio

Previous studies that illustrate Oligocene fluvial systems and thickness of 
channel belts show 10–15-m-thick fining-upward to blocky well-log patterns 
in an updip (potentially tributary systems) location in the paleo–Rio Grande 
fluvial axis (Kerr and Jirik, 1990), 13–30-m-thick channel belts (fining-upward 
to blocky log signature) in the paleo-Houston-Brazos fluvial axis (Reedy, 1949), 
and 25–30-m-thick blocky to fining-upward log packages in the central Texas 
paleo-Colorado fluvial axis (Combes, 1993). The Oligocene Frio Formation 
consists of numerous fluvial feeders across the area rather than specific input 
points along the Houston, Mississippi, or Rio Grande embayments (Combes, 
1993; Galloway et al., 1982).

Our Oligocene drainage-basin reconstructions differ from those published 
by Galloway (2005) and Galloway et al. (2011), which place the headwaters of 
the Oligocene fluvial systems within the Rocky Mountains and ~500,000 km2 
drainage basins. Oligocene channel belts in the thickness range of 30–40+ m 
translate to drainage basins of 1,000,000 to 2,000,000 km2 (Table 1).

CONCLUSIONS

A modern-river empirical relationship between fluvial channel-belt thick-
ness and contributing drainage-basin area provides a mechanism to derive 
the size of ancient river catchments. The large number of drilled wells and 
plethora of previously published studies in the northern Gulf of Mexico basin 
facilitates a rigorous test of the thickness–drainage-basin area scaling relation-
ship in ancient fluvial successions. This large clastic basin derived sediment 
from multiple source terrains and across different climatic regimes. The inter-
vals studied ranged from Paleocene to Oligocene age and spanned from South 
Texas to eastern Alabama. For example, channel-belt thickness as interpreted 
and measured from well logs is substantially different in the Cenomanian-age 
fluvial strata as compared to the Paleocene-age fluvial strata of the northern 
Gulf Coast. Using Quaternary fluvial scaling to predict the drainage-basin areal 
extent and length suggests that the Paleocene fluvial systems were an order of 
magnitude larger than the Cenomanian fluvial systems. Moreover, the popula-
tions with the thickest channel belts occur in the regions underlain by tectonic 
embayments as compared to the areas underlain by tectonic arches. For mod-
erate-size drainage basins, channel belts deposited in a humid climate regime 
are approximately two times thicker than channel belts deposited in an arid 
climate regime.

In general, the findings of this study corroborate the vast number of re-
gional syntheses conducted on the northern Gulf of Mexico basin over the past 
several decades. General comparison of fluvial channel-belt thickness shows 
a positive correlation to gross sediment volume, grain-volume rate of supply, 
and shore-zone or delta volume metrics (Galloway, 2001; Galloway et al., 2011), 
and paleogeographic compilations (Galloway et  al., 2000; Galloway, 2008). 
Furthermore, the fluvial system channel-belt thickness measurements (both 
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thickness and number of measurements in a given area) match shelf-margin 
progradation maps (Galloway, 1989, 2008) and scale predictably to drain-
age-basin size (Blum et al., 2017).
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    www.ccgeo.org Donʼt forget we have our own we page.

    http://terra.nasa.gov/gallery/  Great satellite images of Earth.

    www.ermaper.com They have a great free downloadable viewer for TIFF and other
    graphic files called ER Viewer.

    http://terrasrver.com Go here to download free aerial photo images that can be    
    plotted under your digital land and well data. Images down to 1 meter resolution,
    searchable by Lat Long coordinate. Useful for resolving well location questions.
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TYPE LOGS OF SOUTH TEXAS FIELDS by Corpus Christi Geological Society
 NEW (2019)TYPE LOGS IN RED;  lost now found
ARANSAS COUNTY Vista Del Mar Maurbro MATAGORDA COUNTY Odem
Aransas Pass/McCampbell Deep COLORADO COUNTY StewartSwan Lake  Collegeport Plymouth
Bartell Pass E. Ramsey Swan Lake, East MCMULLEN COUNTY Portilla (2)
Blackjack Graceland N. Fault Blk Texana, North Arnold-Weldon Taft
Burgentine Lake Graceland S. Fault Blk West Ranch Brazil Taft, East
Copano Bay, South DEWITT COUNTY JIM HOGG COUNTY Devil’s Waterhole White Point, East
Estes Cove Anna Barre Chaparosa Hostetter STARR COUNTY
Fulton Beach Cook Thompsonville,N.E. Hostetter, North El Tanque
Goose Island Nordheim JIM WELLS COUNTY NUECES COUNTY Garcia
Half Moon Reef Smith Creek Freebom Agua Dulce (3) Hinde
Nine Mile Point Warmsley Hoelsher Arnold-David La Reforma, S.W.
Rockport, West Yorktown, South Palito Blanco Arnold-David, North Lyda
St. Charles DUVAL COUNTY Wade City Baldwin Deep Ricaby
Tally Island DCR-49 KARNES COUNTY Calallen Rincon
Tract 831-G.O.M. (offshore) Four Seasons Burnell Chapman Ranch Rincon, North
Virginia Good  Friday Coy City Corpus Christi, N.W. Ross
BEE COUNTY Hagist Ranch Person Corpus Christi West C.C. San Roman
Caesar Herbst Runge Encinal Channel Sun
Mosca Loma Novia KENEDY COUNTY Flour Bluff/Flour Bluff, East Yturria
Nomanna Petrox Candelaria GOM St 9045(offshore) VICTORIA COUNTY
Orangedale(2) Seven Sisters Julian Indian Point Helen Gohike, S.W.
Ray-Wilcox Seventy Six, South Julian, North Mustang Island Keeran, North
San Domingo Starr Bright, West Laguna Madre Mustang Island, West Marcado Creek
Tulsita Wilcox GOLIAD COUNTY Rita Mustang Island St. McFaddin
Strauch_Wilcox Berclair Stillman         889S(offshore) Meyersville
BROOKS COUNTY North Blanconia KLEBERG COUNTY Nueces Bay/Nueces Bay Placedo
Ann Mag Bombs Alazan         West WEBB COUNTY
Boedecker Boyce Alazan, North Perro Rojo Aquilares/Glen Martin
Cage Ranch Cabeza Creek, South Big Caesar Pita Island Big Cowboy
Encintas Goliad, West Borregos Ramada Bruni, S.E.
ERF St Armo Chevron (offshore) Redfish Bay Cabezon
Gyp Hill Terrell Point Laguna Larga Riverside Carr Lobo
Gyp Hill West HIDALGO COUNTY Seeligson Riverside, South Davis
Loma Blanca Alamo/Donna Sprint (offshore) Saxet Hirsch
Mariposa Donna LA SALLE COUNTY Shield Juanita
Mills Bennett Edinburg, West Pearsall Stedman Island Las Tiendas
Pita Flores-Jeffress HAWKVILLE:EAGLEFORD Turkey Creek Nicholson
Tio Ayola Foy LAVACA COUNTY REFUGIO COUNTY O’Hem
Tres Encinos Hidalgo Halletsville Bonnieview/Packery Flats Olmitos
CALHOUN COUNTY LA Blanca Hope Greta Tom Walsh
Appling McAllen& Pharr Southwest Speaks La Rosa WHARTON COUNTY
Coloma Creek, North McAllen Ranch Southwest Speaks Deep Lake Pasture Black Owl
Heyser Mercedes LIVE OAK COUNTY Refugio, New WILLACY COUNTY
Lavaca Bay Monte Christo, North Atkinson Tom O’Connor Chile Vieja
Long Mott Penitas Braslau SAN PATRICIO COUNTY La Sal Vieja
Magnolia Beach San Fordyce Chapa Angelita East Paso Real
Mosquito Point San Carlos Clayton Commonwealth Tenerias
Olivia San Salvador Dunn Encino Willamar
Panther Reef S. Santallana Harris Enos Cooper ZAPATA COUNTY
Powderhorn Shary Houdman Geronimo Benavides
Seadrift, N.W. Tabasco Kittie West-Salt Creek Harvey Davis, South
Steamboat Pass Weslaco, North Lucille Hiberia Jennings/Jennings, West
Webb Point Weslaco, South Sierra Vista Hodges Lopeno
S.E. Zoller JACKSON COUNTY Tom Lyne Mathis, East M&F
CAMERON COUNTY Carancahua Creek White Creek McCampbell Deep/Aransas Pass Pok-A-Dot
Holly Beach Francitas White Creek, East Midway ZAVALA COUNTY
Luttes Ganado & Ganado Deep Midway, North El Bano
San Martin (2) LaWard, North Call  Coastal Bend Geological Library, Letty: 361-883-2736
Three Islands, East Little Kentucky l log -- $10 each, 5-10 logs $9 each and 10 + logs $8.00 each – plus postage
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